7,809 research outputs found

    MObile Technology for Improved Family Planning: update to randomised controlled trial protocol.

    Get PDF
    BACKGROUND: This update outlines changes to the MObile Technology for Improved Family Planning study statistical analysis plan and plans for long-term follow-up. These changes result from obtaining additional funding and the decision to restrict the primary analysis to participants with available follow-up data. The changes were agreed prior to finalising the statistical analysis plan and sealing the dataset. METHODS/DESIGN: The primary analysis will now be restricted to subjects with data on the primary outcome at 4-month follow-up. The extreme-case scenario, where all those lost to follow-up are counted as non-adherent, will be used in a sensitivity analysis. In addition to the secondary outcomes outlined in the protocol, we will assess the effect of the intervention on long-acting contraception (implant, intra-uterine device and permanent methods).To assess the long-term effect of the intervention, we plan to conduct additional 12-month follow-up by telephone self-report for all the primary and secondary outcomes used at 4 months. All participants provided informed consent for this additional follow-up when recruited to the trial. Outcome measures and analysis at 12 months will be similar to those at the 4-month follow-up. The primary outcomes of the trial will be the use of an effective modern contraceptive method at 4 months and at 12 months post-abortion. Secondary outcomes will include long-acting contraception use, self-reported pregnancy, repeat abortion and contraception use over the 12-month post-abortion period. DISCUSSION: Restricting the primary analysis to those with follow-up data is the standard approach for trial analysis and will facilitate comparison with other trials of interventions designed to increase contraception uptake or use. Undertaking 12-month trial follow-up will allow us to evaluate the long-term effect of the intervention. TRIAL REGISTRATION: ClinicalTrials.gov NCT01823861

    pH-triggered phase inversion and separation of hydrophobised bacterial cellulose stabilised Pickering emulsions

    Get PDF
    The pH-triggered transitional phase behaviour of Pickering emulsions stabilised by hydrophobised bacterial cellulose (BC) is reported in this work. Neat BC was esterified with acetic (C2–), hexanoic (C6–) and dodecanoic (C12–) acids, respectively. We observed that C6– and C12–BC stabilised emulsions exhibited a pH-triggered reversible transitional phase separation. Water-in-toluene emulsions containing of 60 vol.% dispersed phase stabilised by C6– and C12–BC were produced at pH 5. Lowering the pH of the aqueous phase to 1 did not affect the emulsion type. Increasing the pH to 14, however, caused the emulsions to phase separate. This phase separation was caused by electrostatic repulsion between modified BC due to dissociable acidic surface groups at high pH, which lowered the surface coverage of the water droplets by modified BC. When the pH was re-adjusted to 1 again, w/o emulsions re-formed for C6– and C12–BC stabilised emulsions. C2–BC stabilised emulsions, on the other hand, underwent an irreversible pH-triggered transitional phase separation and inversion. This difference in phase behaviour between C2–BC and C6–/C12–BC was attributed to the hydrolysis of the ester bonds of C2–BC at high pH. This hypothesis is in good agreement with the measured degree of surface substitution (DSS) of modified BC after the pH-triggered experiments. The DSS of C2–BC decreased by 20% whilst the DSS remained constant for C6– and C12–BC

    Study of ΛbΛ(ϕ,η())\Lambda_b\to \Lambda (\phi,\eta^{(\prime)}) and ΛbΛK+K\Lambda_b\to \Lambda K^+K^- decays

    Full text link
    We study the charmless two-body ΛbΛ(ϕ,η())\Lambda_b\to \Lambda (\phi,\eta^{(\prime)}) and three-body ΛbΛK+K\Lambda_b\to \Lambda K^+K^- decays. We obtain B(ΛbΛϕ)=(3.53±0.24)×106{\cal B}(\Lambda_b\to \Lambda\phi)=(3.53\pm 0.24)\times 10^{-6} to agree with the recent LHCb measurement. However, we find that B(ΛbΛ(ϕ)K+K)=(1.71±0.12)×106{\cal B}(\Lambda_b\to \Lambda(\phi\to)K^+ K^-)=(1.71\pm 0.12)\times 10^{-6} is unable to explain the LHCb observation of B(ΛbΛK+K)=(15.9±1.2±1.2±2.0)×106{\cal B}(\Lambda_b\to\Lambda K^+ K^-)=(15.9\pm 1.2\pm 1.2\pm 2.0)\times 10^{-6}, which implies the possibility for other contributions, such as that from the resonant ΛbKN,NΛK+\Lambda_b\to K^- N^*,\,N^*\to\Lambda K^+ decay with NN^* as a higher-wave baryon state. For ΛbΛη()\Lambda_b\to \Lambda \eta^{(\prime)}, we show that B(ΛbΛη,Λη)=(1.47±0.35,1.83±0.58)×106{\cal B}(\Lambda_b\to \Lambda\eta,\,\Lambda\eta^\prime)= (1.47\pm 0.35,1.83\pm 0.58)\times 10^{-6}, which are consistent with the current data of (9.35.3+7.3,<3.1)×106(9.3^{+7.3}_{-5.3},<3.1)\times 10^{-6}, respectively. Our results also support the relation of B(ΛbΛη)B(ΛbΛη){\cal B}(\Lambda_b\to \Lambda\eta) \simeq {\cal B}(\Lambda_b\to\Lambda\eta^\prime), given by the previous study.Comment: 8 pages, 1 figure, revised version accepted by EPJ

    Non-leptonic two-body weak decays of Λc(2286)\Lambda_c(2286)

    Full text link
    We study the non-leptonic two-body weak decays of Λc+(2286)BnM\Lambda_c^+(2286)\to {\bf B}_n M with Bn{\bf B}_n (MM) representing as the baryon (meson) states. Based on the SU(3)SU(3) flavor symmetry, we can describe most of the data reexamined by the BESIII Collaboration with higher precisions. However, our result of B(Λc+pπ0)=(5.6±1.5)×104{\cal B}(\Lambda_c^+ \to p\pi^0)=(5.6\pm 1.5)\times 10^{-4} is larger than the current experimental limit of 3×1043\times10^{-4} (90\% C.L.) by BESIII. In addition, we find that B(Λc+Σ+K0)=(8.0±1.6)×104{\cal B}(\Lambda_c^+ \to \Sigma^+ K^0)=(8.0\pm 1.6)\times 10^{-4}, B(Λc+Σ+η)=(1.00.8+1.6)×102{\cal B}(\Lambda_c^+ \to \Sigma^+ \eta^\prime)=(1.0^{+1.6}_{-0.8})\times 10^{-2}, and B(Λc+pη)=(12.28.7+14.3)×104{\cal B}(\Lambda_c^+ \to p \eta^\prime)=(12.2^{+14.3}_{-\,\,\,8.7})\times 10^{-4}, which are accessible to the BESIII experiments.Comment: 12 pages, 1 figure, revised version accepted by PL

    Transient thermal performance prediction method for parabolic trough solar collector under fluctuating solar radiation

    Get PDF
    As the effect of the global warming is becoming noticeable, the importance for environmental sustainability has been raised. Parabolic trough solar thermal collector system, which is one of the solutions to reduce the carbon dioxide emission, is a mature technology for electricity generation. Malaysia is a tropical country with long daytime, which makes suitable for solar thermal applications with parabolic trough solar thermal collectors. However, the high humidity causes the solar radiation to fluctuate. In order to simulate the solar thermal collectors’ performance at an early design stage of solar thermal power generation systems, fast still accurate transient thermal performance prediction methodis required. Although multiple transient thermal simulation methodologies exist, they are not suited especially at an early design stage where quick but reasonably accurate thermal performance prediction is needed because of their long calculation time. In this paper, a transient thermal prediction method is developed to predict exit temperature of parabolic trough collectors under fluctuating solar radiation. The method is governed by simple summation operations and requires much less calculating time than the existing numerical methods. If the radiation heat loss at the parabolic trough collector tube surface is small, the working fluid temperature rise may be approximated as proportional to the receiving heat flux. The fluctuating solar radiation is considered as a series of heat flux pulses applied for a short period of time. The time dependent solar collector exit temperature is approximated by superimposing the exit temperature rise caused by each heat flux pulse. To demonstrate the capabilities of the proposed methodology, the solar collector exit temperature for one-day operation is predicted. The predicted solar collector exit temperature captures the trend of a finite element analysis result well. Still, the largest temperature difference is 38.8K and accuracy is not satisfactory. Currently, the accuracy of the proposed method is being improved. At the same time, its capabilities are being expanded

    Fouling mechanisms in constant flux crossflow ultrafiltration

    Get PDF
    Four fouling models due to Hermia (complete pore blocking, intermediate pore blocking, cake filtration and standard pore blocking), have long been used to describe membrane filtration and fouling in constant transmembrane pressure (ΔP) operation of membranes. A few studies apply these models to constant flux dead-end filtration systems. However, these models have not been reported for constant flux crossflow filtration, despite the frequent use of this mode of membrane operation in practical applications. We report derivation of these models for constant flux crossflow filtration. Of the four models, complete pore blocking and standard pore blocking were deemed inapplicable due to contradicting assumptions and relevance, respectively. Constant flux crossflow fouling experiments of dilute latex bead suspensions and soybean oil emulsions were conducted on commercial poly (ether sulfone) flat sheet ultrafiltration membranes to explore the models’ abilities to describe such data. A model combining intermediate pore blocking and cake filtration appeared to give the best agreement with the experimental data. Below the threshold flux, both the intermediate pore blocking model and the combined model fit the data well. As permeate flux approached and passed the threshold flux, the combined model was required for accurate fits. Based on this observation, a physical interpretation of the threshold flux is proposed: the threshold flux is the flux below which cake buildup is negligible and above which cake filtration becomes the dominant fouling mechanism
    corecore